banner



Sin 2 X Cos X

In Trigonometry Formulas, we will learn

  • Basic Formulas

  • sin, cos tan at 0, 30, 45, 60 degrees

  • Pythagorean Identities

  • Sign of sin, cos, tan in different quandrants

  • Radians

  • Negative angles (Even-Odd Identities)

  • Value of sin, cos, tan repeats after 2π

  • Shifting bending by π/2, π,  3π/ii (Co-Part Identities or Periodicity Identities)

  • Angle sum and difference identities

  • Double Angle Formulas

  • Triple Angle Formulas

  • Half Angle Identities (Power reducing formulas)

  • Sum Identities (Sum to Product Identities)

  • Product Identities (Product to Sum Identities)

  • Law of sine

  • Law of cosine

  • What are Inverse Trigonometry Functions?

  • Domain and range of Inverse Trigonometry Functions

  • Inverse Trigonometric Formulas

  • Changed Trigonometry Substitutions

Basic Formulas

What are sin cos tan? - SOHCAHTOA - With Examples - Teachoo - Finding sin cos tan

sin, cos tan at 0, thirty, 45, 60 degrees

Trigonometry Formulas - Part 2

Pythagorean Identities

Trigonometry Formulas - Part 3

Signs of sin, cos, tan in unlike quadrants

To learn sign of sin, cos, tan in dissimilar quadrants,

we remember

A dd → S ugar → T o → C offee

Trigonometry Formulas - Part 4

Representing as a table

Quadrant I

Quadrant II

Quadrant III

Quadrant Four

sin

+

+

cos

+

tan

+

+

Radians

Radian measure = π/180  ×  Degree measure

Likewise,

i Degree = 60 minutes

i.e. ane° = 60'

1 Minute = 60 seconds

i.e. one' = lx''

Negative angles (Even-Odd Identities)

sin (–x) = – sin x

cos (–x) = cos x

tan (–ten) = – tan 10

sec (–ten) = sec ten

cosec (–x) = – cosec x

cot (–x) = – cot ten

Value of sin, cos, tan repeats after 2π

sin (2π + x) = sin x

cos (2π + x) = cos ten

tan (2π + x) = tan x

Shifting bending by π/2, π,  3π/2 (Co-Office Identities or Periodicity Identities)

sin (π/2 – 10) = cos ten

cos (π/two – x) = sin 10

sin (π/two + x) = cos x

cos (π/2 + x) = – sin x

sin (3π/two – x)  = – cos x

cos (3π/ii – x)  = – sin x

sin (3π/2 + x) = – cos ten

cos (3π/ii + 10) = sin x

sin (π – 10) = sin ten

cos (π – x) = – cos 10

sin (π + ten) = – sin ten

cos (π + x) = – cos ten

sin (2π – x) = – sin ten

cos (2π – x) = cos x

sin (2π + 10) = sin x

cos (2π + x) = cos x

Angle sum and departure identities

Trigonometry Formulas - Part 5

Double Angle Formulas

Trigonometry Formulas - Part 6

Triple Angle Formulas

Trigonometry Formulas - Part 7

Half Angle Identities (Power reducing formulas)

Trigonometry Formulas - Part 8

Sum Identities (Sum to Product Identities)

Trigonometry Formulas - Part 9

Production Identities (Product to Sum Identities)

Production to sum identities are

2 cos⁡ten  cos⁡y = cos⁡ (x + y) + cos⁡(ten - y)

-2 sin⁡x  sin⁡y = cos⁡ (x + y) - cos⁡(x - y)

2 sin⁡10  cos⁡y = sin⁡ (x + y) + sin⁡(10 - y)

ii cos⁡x  sin⁡y = sin⁡ (x + y) - sin⁡(x - y)

Police of sine

Trigonometry Formulas - Part 10

Here

  • A, B, C are vertices of Δ ABC
  • a is side opposite to A i.e. BC
  • b is side opposite to B i.east. AC
  • c is side opposite to C i.due east. AB

Law of cosine

Just like Sine Police force, we have cosine Law

Trigonometry Formulas - Part 11

What are Inverse Trigonometric Functions

If sin θ = x

Then putting sin on the correct side

θ = sin -one x

sin -ane x = θ

So, inverse of sin is an bending.

Similarly, inverse of all the trigonometry function is angle.

Note : Here angle is measured in radians, non degrees.

And then, nosotros have

sin -1 10

cos -1 x

tan -1 10

cosec -i x

sec -1 x

tan -1 x

Domain and Range of Inverse Trigonometric Functions

Domain

Range

sin -one

[–1, ane]

[-π/2,π/2]

cos -1

[–i, ane]

[0,π]

tan -i

R

(-π/ii,π/ii)

cosec -ane

R – (–i, i)

[π/2,π/two] - {0}

sec -1

R – (–1, one)

[0,π]-{π/2}

cot -1

R

(0,π)

Changed Trigonometry Formulas

Some formulae for Inverse Trigonometry are

sin –1 (–x) = – sin -one x

cos –1 (–x) = π – sin -1 x

tan –i (–x) = – tan -ane x

cosec –i (–x) = – cosec -1 ten

sec –i (–x) = – sec -1 10

cot –1 (–x) = π – cot -one 10

Trigonometry Formulas - Part 12

inverse-trigonometry-formula---3.jpg

Inverse Trigonometry Substitution

Trigonometry Formulas - Part 14

Support Teachoo in making more (and meliorate content) - Monthly, half-dozen monthly, yearly packs bachelor!

Sin 2 X Cos X,

Source: https://www.teachoo.com/9723/1412/Trigonometry-Formulas/category/2-sin-x-sin-y-formula/

Posted by: broughtonthir1999.blogspot.com

0 Response to "Sin 2 X Cos X"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel